Mid-infrared supercontinuum generation using dispersion-engineered Ge(11.5)As(24)Se(64.5) chalcogenide channel waveguide.
نویسندگان
چکیده
We numerically investigate mid-infrared supercontinuum (SC) generation in dispersion-engineered, air-clad, Ge(11.5)As(24)Se(64.5) chalcogenide-glass channel waveguides employing two different materials, Ge(11.5)As(24)Se(64.5) or MgF(2) glass for their lower cladding. We study the effect of waveguide parameters on the bandwidth of the SC at the output of 1-cm-long waveguide. Our results show that output can vary over a wide range depending on its design and the pump wavelength employed. At the pump wavelength of 2 μm the SC never extended beyond 4.5 μm for any of our designs. However, supercontinuum could be extended to beyond 5 μm for a pump wavelength of 3.1 μm. A broadband SC spanning from 2 μm to 6 μm and extending over 1.5 octave could be generated with a moderate peak power of 500 W at a pump wavelength of 3.1 μm using an air-clad, all-chalcogenide, channel waveguide. We show that SC can be extended even further when MgF(2) glass is used for the lower cladding of chalcogenide waveguide. Our numerical simulations produced SC spectra covering the wavelength range 1.8-7.7 μm (> two octaves) by using this geometry. Both ranges exceed the broadest SC bandwidths reported so far. Moreover, we realize it using 3.1 μm pump source and relatively low peak power pulses. By employing the same pump source, we show that SC spectra can cover a wavelength range of 1.8-11 μm (> 2.5 octaves) in a channel waveguide employing MgF(2) glass for its lower cladding with a moderate peak power of 3000 W.
منابع مشابه
Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared.
A new type of microstructured fiber for mid-infrared light is introduced. The chalcogenide glass-based microporous fiber allows extensive dispersion engineering that enables design of flattened waveguide dispersion windows and multiple zero-dispersion points - either blue-shifted or red-shifted from the bulk material zero-dispersion point - including the spectral region of CO(2) laser lines app...
متن کاملSupercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide.
We report the generation of a mid-infrared supercontinuum created by ≈7.5 ps duration pulses at 3260 nm passing through a dispersion engineered As(2)S(3) rib waveguide. The threshold for a 6.6 cm long waveguide was around 800 W and at 1700 W the spectrum extended from ≈2.9-4.2 μm and was limited on the long wavelength side by absorption in the cladding of this particular waveguide.
متن کاملBroadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide.
We demonstrate broadband supercontinuum generation (SCG) in a dispersion-engineered silicon-germanium waveguide. The 3 cm long waveguide is pumped by femtosecond pulses at 2.4 μm, and the generated supercontinuum extends from 1.45 to 2.79 μm (at the -30 dB point). The broadening is mainly driven by the generation of a dispersive wave in the 1.5-1.8 μm region and soliton fission. The SCG was mo...
متن کاملUltrabroadband mid-infrared supercontinuum generation through dispersion engineering of chalcogenide microstructured fibers
We demonstrate numerically that the use of dispersion-engineered microstrucured fibers made with chalcogenide glasses allows one to generate ultrabroadband supercontinuum spectra in the mid-infrared region by launching optical pulses at a suitable wavelength. As a specific example, numerical simulations show that such a 1 cm long fiber, made withGe11.5As24Se64.5 glass and pumped at a wavelength...
متن کاملMid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm.
We present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr(3+)) chalcogenide fibre lasers. The 4.5um laser is assumed to have a repetition rate of 4MHz with 50ps long pulses having a peak power o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2015